UCCD1024 DATA STRUCTURES AND ALGORITHMIC PROBLEM SOLVING
Assignment 1

UCCD1024

DATA STRUCTURES AND

ALGORITHMIC PROBLEM SOLVING

ASSIGNMENT 1 LINKED LISTS
DUE DATE: WEEK 10, MONDAY BEFORE 12.00PM
PLEASE READ THE QUESTION CAREFULLY BEFORE YOU START.

1.
OBJECTIVE

(a) To review and strengthen concepts about linked lists through an application development.

(b) To review techniques of dynamic data structure creation and manipulation.
2.
EQUIPMENT

Hardware: The PCs in the lab for conducting your practical.

Software: The Microsoft Visual Studio 2017. Your program will only be tested

 by the markers using Visual Studio 2017.

3.
INDIVIDUAL OR GROUP PROJECT:
Form a group of 1 to 2 persons (CAN BE FROM DIFFERENT PRACTICAL SESSION). Select one person to be the leader. Only one person need to upload the Assignment to WBLE for submission. (YOU NEED TO FILL IN THE GROUP MEMBERS INFORMATION IN THE README.TXT PROVIDED. MARKS WILL BE DEDUCTED IF THE README.TXT IS NOT FILLED IN.)
4. DESCRIPTION OF PROJECT:
In this project, you need to write the functions given in the main() that will store and manage student information in FICT using linked lists. Three classes have been created, which are Student class, Exam class and Subject class. Student class is used to store student information and the Exam class is used to store information for past exam for a student in a trimester. The Subject class is used to store information for a subject taken by student. Refer to the Figure1.doc given for the representation of the types of linked list that you are going to create. Below are the details for each of the classes:
PLEASE DO NOT CHANGE (ADD/REMOVE) ANY ATTRIBUTES OR FUNCTIONS IN LIST, NODE, STUDENT, EXAM AND SUBJECT STRUCTS GIVEN TO YOU. MARKS WILL BE DEDUCTED IF YOU DO SO.
Student Struct:

Refer to the file Student.h for all the members in the struct. Refer to the table below for the format of the data stores for each attributes in Student struct.

	Attributes
	Format

	name
	A c-string with 30 characters

	id
	A c-string to represent id. Student id consists of 7 digits with the first 2 digit represent years enroll. E,g.: 1300345

	course
	Use 2 characters to represent:

CS – Computer Science

IA – Information Systems Engineering

IB – Business Information Systems

CN – Communication and Networking

CT – Computer Engineering

	phone_no
	A 7 digits number in the following format: 123-4567

	current_cpga
	The latest cgpa for a student with 5 decimal places. E.g.: 3.51762

	totalCreditsEarned
	Total credits earned so far.

	exam
	An array to store past exam for a student according to trimester. This array can store up to 10 trimester result.

	exam_cnt
	A counter to keep track of the number of past exam result store in exam array.

The following member functions are given in the struct:
1. Constructor Student() to initialized name, id, course and phone_no to empty string (use strcpy) and current_cgpa, exam_cnt and totalCreditsEarned to 0.

2. Function bool compareName1 (Student) to compare student name using >= operator. You can use this function to compare which student’s name come first according to alphabetical order. It is used in the second insert function.
3. Function bool compareID (Student) to compare student id using == operator. You can use this function to search for student in a linked list based on id.
4. Function void print(ostream &) to print Student struct variable. The argument pass to the function is used to determine which stream to print the output.
5. Function bool calculateCurrentCGPA() to calculate the current cgpa for a student.

Exam Struct:

Refer to the file Exam.h for all the members in the struct. Refer to the table below for the format of the data stores for each attributes in Exam struct.
	Attributes
	Format

	trimester
	Store the trimester of the exam using integer to represent the 3 trimester in a year as follow:

1 – January Trimester

5 – May Trimester

10 – October Trimester

	year
	A four digit integer to represent the year of the exam.

	gpa
	GPA obtained for a trimester. Use 5 decimal points to represent the value.

	numOfSubjects
	The number of subjects taken in that trimester.

	sub[]
	The subject information taken in that trimester. Each element is an object of class Subject. Maximum only 6 subjects can be taken and minimum is 1 subject.

The following member functions are given in the Exam struct:

1. Constructor Exam() to initialized trimester, year, gpa and numOfSubjects to 0.
2. Function bool calculateGPA() to calculate the gpa for an exam in a trimester
based on the grade and number of subjects take. Refer to file Figure2.doc for the grade point based on the marks obtained.
3. Function void print(ostream &) to print the Exam struct variable. The argument pass to the function is used to determine which stream to print the output.

Subject Struct:

Refer to the file Subject.h for all the members in the Subject struct. Refer to the table below for the format of the data stores for each attributes in Subject struct.
	Attributes
	Format

	subject_code
	A string with 10 characters to represent a code for a subject. First four characters represent must be alphabet and last four are digits.

	subject_name
	A string represents the subject names.

	credit_hours
	Number of credit hours for a subject.

	marks
	Marks obtained for a subject. Range is from 1 to 100.

The following member functions are given in the Subject struct:

1. Constructor Subject() to initialized subject_code and subject_name to empty string (use strcpy) and credit_hours, and marks to 0.
2. Function const char *getGrade() to return the grade (A+, A, B+, …) for a subject based on the marks. Refer to file Figure2.doc for the grade return based on the marks obtained.

3. Function double getGradePoint() to return the grade point for a subject based on the marks obtained. Refer to file Figure2.doc for the grade point return.
4. Function void print(ostream &) to print Subject struct variable. The argument pass to the function is used to determine which stream to print the output.
main() Tasks:
You need to write the following functions in main().

1. Write a function bool BuildStuList(char *filename, List *list) to read student information from a file and store in a linked list. Ensure there is no duplicate record of student stored in the list. The function will return true if successfully read and false otherwise. A sample of the textfile is in “student.txt”.
2. Write a function bool DeleteRecord(List *list, char *id) to delete a student from the linked list based on student id. The function will return true if successfully delete and false if student cannot be found in the list.

3. Write a function bool Display(List list, int source) that will display information to the screen. Function return false if list is empty and true otherwise. The source variable will indicate whether to display to screen (source = 1) or file (source = 2). If write to file, use the filename “student_result.txt” to write. A sample of each of the output option is given in text file in folder sample output. If the student’s exam_cnt = 0, then print “THIS STUDENT HAVEN’T TAKEN ANY EXAM YET”. You can design your own output format but the necessary details must be there.
4. Write a function bool InsertResult(char *filename, List *list) to insert student exam result to the linked list. Open the file with filename and read every record and find the student to insert the exam based on their id. A sample of the text file is in “exam.txt”. Read every record in the file and put the exam info in an exam struct variable. Then find the correct student based on id to insert the exam struct variable. You need to calculate the current cgpa every time you insert a new exam to a student.
5. Write a function bool getAverageCGPAByCourse(List list) that will computes the average CGPA in the student list list according to course. The function will print the average CGPA, number of students that are above or equal to the average in variable above and number of students that are below average in variable according to course. A sample output is shown below. The function will return false for empty list and true otherwise.
Sample Output:
	Course
	Average CGPA
	No. of Students Below Average
	No. of Students Below Average

	CS
	3.03267
	15
	32

	IA
	2.95286
	20
	36

	IB
	3.01197
	12
	29

	CN
	2.92167
	10
	26

	CT
	3.08763
	7
	18

6. The function bool filterStudent(List list1, List *list2, char *course, int year, int totalcredit) that will filter student in list1 according to course, year and totalcredit earned. For example, if the value pass in for course = “CS”, year = 2018 and totalcredit = 30, you need to traverse list1 to find all CS students that are enrolled in 2018 and the totalCreditsEarned is >= 30. If a student fulfills all the three conditions, then insert to list2. You can extract the year enrolled from the student id where the first 2 digits represent year enrolled (e.g.: if id is 1600345 then year enrolled is 2016). Call Display function in main after function call to display list2 content to screen. The function will return false if list1 is empty or list2 not empty. Otherwise, return true. (Note: list1 content will remain the same after function call)

7. Write a function bool findEligibleFYPStudent(List list1, List *FYPlist) that will identify student that can register for FYP (Final Year Project). A student is eligible to register for FYP if he/she has earned at least 30 credits hours and the student has taken and passed (must obtain at least grade C) UCCD2502 Introduction to Inventive Problem Solving and UCCD2513 Mini Project. Call Display(FYPlist, 1) in main() after function call to display FYPlist. If FYPlist is empty print message “There is no student that is eligible to take FYP”. Assume that list FYPlist is empty when pass to function and list will not be changed after function call. The function will return false for empty list1 and true otherwise.
8. Write a function bool identifyGoodPoorStudent(List list1, List *goodList, List *poorList) that will identify student with good result and poor result in list1. A student is considered to have good result if he/she can get gpa >= 3.50000 for at least 3 trimesters in all the exams and CGPA >= 3.50000 and no fail subject. A poor student is a student that get gpa <= 2.0000 for at least 3 trimester and CGPA <= 2.0000. Copy all the good result students to list goodList and all the poor students to list poorList. Call function Display(goodList, 1) and Display(poorList, 1) in main() to print goodList and poorList in the screen after calling the function. Assume goodList and poorList are empty when pass to function and list1 content will not be changed after function call. If either the goodList or the poorList is empty after function all, then print message “There is no student in good list” or “There is no student in poor list”. The function will return false for empty list1 and true otherwise. (Note: If a student has taken < 3 exams then no need to check if the student belongs to good or poor list.)
9. Write a int menu() function that contain menu with choice from 1 to 9 above to let user choose that task. Function will return the choice chosen. Make sure user can continuously choose for the menu until exit choice is chosen. Sample menu is displayed below:

1. Read file
2. Delete record
3. Insert past exam result
4. Display Output
5. Get Average CGPA By Course
6. Filter Student
7. Find Eligible FYP Student

8. Identify Good and Poor Result Student
9. Exit.

Test run

Although each of the above tasks is to be implemented as a single function, you can create additional sub-function(s) to handle portions of the function if it’s necessary. This is especially true if the original function is too long or contains more than one functionally related group of statements. You must test for all conditions that might possibly arise; print out error messages as needed.

A sample of text files student.txt and exam.txt is attached together with the question. The content of text file will be changed (while still adhering to the same data format) during grading in order to test your programs' robustness. The objective is to ensure that you do not hardcode your program to work exclusively for the given sample student records. PLEASE CREATE YOUR OWN OR ADD MORE DATA TO THE SAMPLE TEXT FILES GIVEN TO YOU TO MAKE SURE YOU HAVE TESTED YOUR PROGRAM FOR ALL POSSIBLE CASES THAT YOU CAN THINK OF. MAKE SURE THE FORMAT OF YOUR OWN TEXT FILES MUST BE SAME FORMAT AS THE ONE GIVEN HERE TO ENSURE YOUR PROGRAM CAN READ THE SAME FORMAT WHEN WE MARK YOUR PROGRAM.
Format of text file EXAM.TXT are as follow:
id
trimester
year
numOfSubjects
list of subjects (for every subject store unit code, unit name, credit hours and marks obtained)

5.
ERROR HANDLING
We will first test your work with error-free inputs from files. It would be ideal if your programs can also do appropriate error handling like

· Input file cannot be found

· Duplicate records are read in

Duplicate records should be ignored and appropriate error statement should be printed. Apart from these, you do not need to worry about other types of errors. For all errant situations, the program should recover and still run as usual.
6.
REPORT

(a) This assignment is due according to the due date posted on WBLE. You must do the submission through WBLE. You should create one folder using the group leader name and then copy all your source code files (*.h, and *.cpp) into this folder. You should also FILL IN the readme file provided that contains the information stated in (b). Any extra data input files that you create to test your program also need to be submitted. Compress this folder into a zip file and submit only this zip file to WBLE. ONLY ONE MEMBER NEEDS TO UPLOAD THE ZIP FILE IN WBLE FOR SUBMISSION.
(b) The readme file should contain the following information: All group member name, id, course and practical session.

(c) The grading of your work will be based on the following criteria:

· Correctness of program (whether the functions work according to

 specifications);

· Structure, organization, presentation of codes;

· Documentation of codes (how easy to understand your codes); avoid excessive comments, such as commenting every line of your code.

· Comprehensiveness of the test cases.

7.
ACADEMIC HONESTY AND COLLABORATION

Cooperation is recommended in understanding various concepts and system features. But the actual solution of the assignments, the programming and debugging must be your individual work, except for what you specifically credit to other sources. (Your grade will be based on your own contribution.) For example, copying without attribution any part of someone else’s program is plagiarism, even if you modify it and even if the source is a textbook. You can document the credit to other sources at the start of your program code listing. The University takes acts of cheating and plagiarism very seriously: first time violators may fail the coursework component of UCCD1024. Any wholly (or partly) copied (or being copied) programs will receive zero mark.

9.
REFERENCES

[1]
Text and reference books for UCCD1024.

[2]
http://msdn.microsoft.com/en-us/visualc/aa336395

Page 7

